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Abstract
The realization of a fully electrical semiconductor-based device making use of
the electron spin is of fundamental importance for physically studying spin-
related phenomena. We have performed a detailed theoretical analysis of
the feasibility of all electrical spin injection and detection in semiconductors
by means of ferromagnetic electrodes and including spin-selective interface
barriers to overcome the impedance mismatch. Based on the Poisson and
diffusion equation, including electric field effects, the expected resistance
difference for parallel and anti-parallel configurations of the ferromagnetic
electrodes is analytically calculated and the influence of the sample and
measurement geometry is extensively investigated. In this paper, we propose
a new measurement geometry, for which we predict a clearly larger spin
accumulation over a larger distance. Electric fields created in different sample
regions via extra bias voltages will compensate spin loss in side branches.
Even when the spin diffusion length is orders of magnitude smaller than
the semiconductor length, the magnetoresistance in lateral devices closely
approaches values for vertical devices.

1. Introduction

The research to exploit the spin degree of freedom in semiconductors has gained a lot
of momentum recently [1], fuelled by potential applications in the field of quantum
computation [2], magnetic field sensors, memory and logic devices [3]. Semiconductors are
attractive because of their nonlinear behaviour, the controllability of the impedance via doping,
and their long spin relaxation times. Best established in the field is the optical control of
spins in semiconductors. Optical injection and detection in spin-polarized carriers are used to
study spin diffusion and spin transport across semiconducting interfaces [4]. Efficient electrical
injection of spin-polarized currents in a III–V semiconductor has been proven from either
a dilute magnetic semiconductor [5], a metallic ferromagnetic material [6], or across AlOx
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tunnel barriers [7]. Electrical spin injection and accumulation, subject to electric, magnetic and
strain fields, was optically imaged in a GaAs channel of lateral spin-transport devices [8, 9].
Recently, a demonstration of a fully electrical scheme for achieving spin injection, transport and
detection in a single device was given by Lou et al [10]. Although the bias dependence of the
nonlocal signal and the spin polarization is not completely understood, they showed irrefutable
proof using the Hanle effect. A transverse magnetic field suppresses the nonlocal signal at the
detection contact by inducing spin precession and dephasing in the channel. Achieving a fully
electrical semiconductor-based device that makes use of the electron spin is of fundamental
importance for physically studying spin-related phenomena. For the design and fabrication of
such a device a comprehensive theoretical understanding of spin injection and spin transport in
semiconductors is necessary, and qualitative, usable design rules are given in this paper.

From a theoretical point of view, Johnson and Silsbee introduced a concept based on
spin-dependent distribution functions to describe the spin transport for an interface between
ferromagnetic and nonmagnetic metals [11]. Valet and Fert [12] extended the model in a
Boltzmann equation formalism, that reduces to the same macroscopic transport equations
if the mean free path is much shorter than the spin diffusion length. Recently, numerical
studies in perpendicular-transport structures verified that their approach is also valid in the
limit of a spin diffusion length comparable to the appropriate mean free path [13]. These
macroscopic transport equations were utilized to analyse the feasibility of spin injection
into semiconductors [14] and, recently, also organic systems [15]. The results showed that
the crucial parameter is the resistance mismatch between semiconductor and metal. One
potential solution was suggested by Rashba [16]: one could make use of tunnelling as
injection mechanism. The conditions for efficient spin injection from a ferromagnetic metal
into a semiconductor were established by Fert and Jaffrès [17] and the magnetoresistance of
a ferromagnet–semiconductor–ferromagnet trilayer was computed [18–20]. Several devices
using lateral semiconductor spin-valves with novel bias schemes, like spin transference and
magnetoresistance amplification in a transistor [21], and electric readout of magnetization
dynamics in a ferromagnet–semiconductor system [22] are proposed. Another interesting
scheme was studied by McGuire et al [23], who calculated the lateral spin transport induced by
ferromagnetic proximity on a two-dimensional electron gas.

In contrast with metals, for which the electric field is essentially screened, in
semiconductors a moderate electric field can dominate the carrier motion. Yu and Flatté [24]
examined the spin diffusion in lightly doped semiconductors by consistently taking into account
electric-field effects and nondegenerate electron statistics. For high fields, spin transport is
described in terms of two field-induced spin diffusion lengths. D’Amico [25] analysed the spin
transport in semiconductors in the intermediate to degenerate regime.

For the development of electrical semiconductor spintronic devices, self-consistent two-
dimensional charge transport simulations, taking into account tunnelling, Fermi-level pinning,
band bending, impact ionization and their bias dependence, are a necessity. Although
considerable progress in this direction has been witnessed in recent years [26], it is crucial
to realize that the basic transport behaviour of realistic devices has not been documented in
much detail. More specifically, the effect of elementary parameters on the magnetoresistance,
such as the electric field, spin diffusion length, the resistance of the electrodes, interface barriers
and semiconductor, is intimately related to the geometry of the semiconductor channel and the
adjacent entities for injection and detection, and should be carefully analysed.

In this paper, we calculate the magnetoresistance of a vertical sample layout, consisting
of a ferromagnetic metal–nonmagnetic semiconductor–ferromagnetic metal stack with spin-
selective (semi-)insulating barriers, as well as of a lateral layout, with two metallic
ferromagnetic electrodes on top of a planar nonmagnetic semiconductor channel, also

2



J. Phys.: Condens. Matter 19 (2007) 276201 J J H M Schoonus et al

separated by spin-selective interface layers. Our study is in particular aimed at n-doped
semiconductors, where the spin diffusion lengths are extremely long, possibly leading to very
large magnetoresistance [8]. Generally, a Schottky barrier will form at the interfaces of the
insulating layer and the semiconductor, leading to positively charged donor ions left behind in
the depletion region that is practically stripped of electrons. Although injection of electrons is
feasible when a voltage is applied across such a device, the presence of the Schottky barrier
prevents tunnelling into the detector electrode in the reversed bias. However, by highly doping
the region just beneath the semiconductor surface [8, 26, 27], numerical simulations show that
the width of the Schottky barrier is much smaller than the spin flip length and comparable
to the width of the insulating barrier resistance [28, 29]. Therefore, it only affects electron
transport across the barrier, i.e. it renormalizes the interface barrier resistance, but is does not
affect the bulk transport properties. In this regime, we can assume there is no space charge in
the semiconductor, especially near the interface with the spin-selective barrier, and the electron
density is constant throughout the nonmagnetic semiconductor. In other words, we assume that
the bottom of the conduction band remains substantially flat in the vicinity of the interface on
a length scale comparable to the spin flip length. Therefore, we can use the drift–diffusion
equation, which assumes charge neutrality throughout our layered structure. Furthermore, this
work may assist in the understanding of spin transport in MnAs/GaAs lateral spin-valves [30],
where also local changes in band structure and carrier density are negligible as these are not
taken into consideration in our calculation. We would like to emphasize that our theory clearly
not applies for spin injection via (Zn, Mn, Be)Se as the dilute magnetic semiconductor into the
nonmagnetic semiconductor (Zn, Be)Se. For voltage drops across the interface larger than a
few mV, Schmidt et al [31] calculated for this case that the spin-injection efficiency decreases
strongly. The effect in this nonlinear regime is caused by repopulation of the minority spin
level in the magnetic semiconductor due to band bending at the interface. Vanheertum et al
[32] pointed out that special care has to be taken concerning the width of the contacts to
avoid depolarization of the carriers caused by parallel current flow in the highly doped region
directly underneath the electrode. Therefore, we assume single point contacts in our analysis,
corresponding to direct perpendicular injection in the semiconductor and thus negligible current
flow in the suppression layer parallel to the electrode.

Based on the assumption of charge neutrality, we derive an analytical expression for the
magnetoresistance and examine the role of the interface resistances and spin diffusion length
for different realistic sample geometries. It will be illustrated that the electric field effect can
considerably enhance the magnetoresistance as long as the spin-selective interfacial barriers are
perfectly matched. To eliminate the detrimental effect of the electric field in the semiconductor
side branches on the magnetoresistance, an alternative measurement geometry is introduced
in which we apply, in addition to the ac measurement signal, an extra dc bias voltage over the
semiconductor to tune the electric field in the semiconductor. In this way, the magnetoresistance
for lateral devices can increase to values which are normally found for standard vertical trilayer
devices.

2. Spin-polarized transport in semiconductors

As reported by Yu and Flatté [24], spin transport in lightly doped semiconductors can be
described by a drift–diffusion equation by consistently taking into account electric field
effects and nondegenerate electron statistics. In this section, their main results for a better
understanding of the next section will be summarized, we discuss the validity for (non)magnetic
metals and GaAs, and we introduce the parameters used throughout this paper.

We consider here a n-doped homogeneous system without space charge. For a current
density flowing in the x direction, a one-dimensional solution for the Poisson and diffusion

3



J. Phys.: Condens. Matter 19 (2007) 276201 J J H M Schoonus et al

Figure 1. ζ as a function of the electron density for different temperatures in three-dimensional
systems. The effective electron mass is 0.065 m0, where m0 is the free electron mass.

equation is searched in terms of the electrochemical potential μ̄↑(x) = μ↑(x)−eV (x) for spin
up and spin down [33], respectively:

∂2μ̄↑(↓)

∂x2
− 1

2
ζ↑(↓)eE

∂μ̄↑(↓)

∂x
= (μ̄↑(↓) − μ̄↓(↑))

λ2
↑(↓)

, (1)

with

ζ↑(↓) =
∫ ∞

0 N↑(↓)(ε − εc↑(↓))
∂ f
∂ε

dε
∫ ∞

0 N↑(↓)(ε − εc↑(↓)) f dε
, (2)

where E is the electric field, N is the density of states, f the Fermi–Dirac distribution function
and −e and ε(c) are respectively the charge and energy (at the conduction band) of the electrons.

The bias regime for which the electrical field effects dominates depends on the relative
magnitude of the drift and the diffusive term. In the drift term, ζ expresses the influence of
the temperature and doping. For three temperatures, ζ is plotted in figure 1 as a function of
the electron density n. The metal regime is characterized by a density of conducting electrons
higher than 1 × 1018 cm−3, and a critical electric field, where the drift term starts dominating
the diffusive term, is independent of temperature. The density of states varies only slightly
with the energy at the Fermi level and the numerator of equation (2) becomes constant and thus
independent of the temperature. For intermediate and lightly doped semiconductor spintronic
devices, at temperatures down to 30 K, a moderate electric field can already dominate the carrier
motion [34] and the drift term cannot be neglected any longer. However, in the degenerated
regime where the Fermi energy is much smaller than the thermal energy, for GaAs estimated
by T < 4.5 ln(n/1014 cm−3) with n in cm−3 and T in K, carrier–carrier interactions assume
a relevant role [35] and they partly weaken the electric field effects. As a result, higher
applied fields are necessary for a significant contribution of the drift term. Only for lightly
doped semiconductors (n < 1 × 1016 cm−3) and temperatures above 3 K, will the results of
equation (1) be reasonably accurate.

For nonmagnetic materials or materials with low spin polarization, the bottom edge of
the conduction band is approximately equal for both spin species, and ζ↑ can be set equal
to ζ↓. For ferromagnetic materials, ζ↑ differs from ζ↓. Via the Einstein equation ζ is equal
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to the mobility divided by the diffusion constant and the electron charge. The mobility and
diffusion constant of the lower-conductivity spin species are dominant and dependent on the
spin polarization of the material equations, and we could mathematically solve equation (1)
for μ̄↑ and μ̄↓. However, for simplicity we neglect, analogously to nonmagnetic materials,
the spin difference in ζ , which makes the analysis only accurate for low-polarized materials.
We assume that conductivity predominantly takes place at the Fermi level and introduce a
spin-dependent conductivity times channel area (width times height) σ . The general form of
the steady-state solution to equation (1) in a homogeneous medium, using the requirement of
particle and current conservation, is given by

μ↑ = A + Bx + C

σ↑
exp(−x/λd) + D

σ↑
exp(x/λu) (3a)

μ↓ = A + Bx − C

σ↓
exp(−x/λd) − D

σ↓
exp(x/λu), (3b)

where σ↑(↓) is the conductivity times channel area of the spin-up(down) channel. The two
quantities λu and λd are the upstream and downstream spin diffusion lengths [33], defined as

λd = 1

λ

(

− M

2
+

√(
M

2

)2

+ 1

)−1

(4a)

λu = 1

λ

(

+ M

2
+

√(
M

2

)2

+ 1

)−1

, (4b)

with

M = ζ eEλ, (5)

where M is defined as a dimensionless parameter characterizing the ratio between the
electrostatic energy and thermal energy, and (1/λ)2 = (1/λ↓)2 + (1/λ↑)2. In metals, M � 1
and the drift term in equation (1) can be neglected, because the effective electric field is screened
by the individual Coulomb fields of all the conducting electrons. However, for semiconductors,
M can be significantly larger than 1. For example in GaAs, with a doping of 1 × 1016 cm−3,
a spin diffusion length of 2 μm [36], and an applied voltage of 10 mV, M could be already of
the order of 100. The spin diffusion length of electrons moving oppositely to the applied field
is increased, while the spin diffusion length of electrons moving in the direction of the field is
decreased. In addition to a random diffusive walk, the electrons follow a drift motion in the
direction of the field [33].

To summarize this part, an analytical drift–diffusion equation is given for ferromagnetic
metals, nondegenerate semiconductors and, in first order, for degenerate nonmagnetic
semiconductors. We have discussed the validity for GaAs related to the carrier density,
polarization and temperature. In the next section, using the drift–diffusion equation, the
combined effects of interface barriers, semiconductor resistance, spin diffusion length and
applied electric field will be studied in realistic device and measurement geometries.

3. Magnetoresistance calculations

We apply the macroscopic spin transport model for two geometries using a system
composed of a ferromagnet–interface barrier–semiconductor–interface barrier–ferromagnet, as
schematically shown in figure 2. By an interface barrier, we mean a spin-selective (semi-)
insulating layer to overcome the impedance mismatch, and this practically implies the presence
of a Schottky barrier or thin insulating barrier. As explained in the introduction, the Schottky
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Figure 2. (a) Vertical ferromagnet–interface barrier–semiconductor–interface barrier–ferromagnet
geometry. (b) Lateral ferromagnet–interface barrier–semiconductor–interface barrier–ferromagnet
geometry. Numerals and axis indications refer to regions where separate solutions of the diffusion
equation are considered. Current is injected in region 1 and extracted from region 2, while the
voltage is measured between the same regions. Arrows indicate the direction of the electric field in
the lateral device.

barrier at the interface of the semiconductor and insulator is suppressed by highly doping
the region just beneath the semiconductor surface. This enables effective spin injection and
detection in the semiconductor and allows that the calculations can be performed with the
assumptions of homogeneous systems and local charge neutrality. The first geometry, as
discussed in the literature [37], we denote as a vertical geometry (see figure 2(a)). The
lateral geometry shown in figure 2(b) differs from the standard vertical geometry, in particular
due to the semiconductor channel that extends to infinity in both directions, and the two
electrodes are grown on top at a mutual distance L. Note that an epitaxially grown lateral
semiconductor device is technologically more easily realizable; in addition, it allows for four
terminal measurements. However, the two side branches act as an extra channel for spin loss.
Therefore, the magnetoresistances in the lateral device is expected to be lower in comparison
with a vertical device, which will be further analysed below.

First, we will solve the drift–diffusion equation in each region and for each spin state of
the vertical geometry. Three different regions can be identified: region 1 is the ferromagnetic
injector, region 2 is the ferromagnetic detector, and region 3 is the semiconductor. The
parameters used are labelled with a subscript referring to these region numbers. Current is
injected in region 1 and extracted in region 3, and the voltage is measured between regions 1
and 3. Two configurations can occur: parallel magnetization and antiparallel magnetization
of the electrodes. We will first consider parallel configuration of the ferromagnetic electrodes.
The chemical potentials have the general form like equations (3a) and (3b) and are for region
1, 2 and 3:

1 : μ↑(↓) = Ap + Je

σ1 f
x ± Bp

σ1↑(↓)

exp(x/λ f ) (6a)

2 : μ↑(↓) = Cp + Je

σ2 f
x ± Dp

σ2↑(↓)

exp(−x/λ f ) (6b)

3 : μ↑(↓) = Je

σ3
x ± 2Fp

σ3
exp(−x/λd) ± 2Gp

σ3
exp(x/λu). (6c)

We have written for the total conductivity of the ferromagnet σ1(2) f = σ1(2)↑ + σ1(2)↓ and for
the total current density J = J↑ + J↓. Ap, Bp, Cp, Dp, Fp and Gp are six independent unknown
constants. For regions 1 and 2, the exponential terms which increase to infinite for x → ±∞,
respectively, are omitted, because no spin splitting is assumed in the electrode far away from the
interface barrier. The linear term in equations (6a)–(6c) is required due to the condition that at
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±∞ the solutions for the chemical potentials must coincide with the standard bulk dependence
(μ↑|x→±∞ = μ↓|x→±∞ = H + Je/σ · x), with H a constant. The average potential at
the middle of the semiconductor is set to zero. Finally, because of particle conservation, the
equations for the spin-down electrons can be found by putting a minus sign in front of constants
Bp, Dp, Fp and Gp and adjusting the conductivity for the negative spin species.

If no spin flip scattering at the interface with the interface barrier is present, the first
boundary condition at the interfaces is the discontinuity of μ↑ and μ↓. This is associated
with the existence of spin-selective injector and detector interface resistances Rib/(1+ (−)P0),
that is,

μ↑(↓)(x=− L
2

−
)
− μ↑(↓)(x=− L

2
+
)
= 2Rib1

(1 + (−)P0)
J↑(↓) (7a)

μ↑(↓)(x=−+ L
2

−
)
− μ↑(↓)(x=+ L

2
+
)
= 2Rib2

(1 + (−)P0)
J↑(↓), (7b)

where J↑(↓) is the current in the spin-up(down) channel and P0 is the polarization at the interface
between the ferromagnetic layer and the barrier. Secondly, the current density in each spin
channel has to be conserved:

J↑(↓)(x = L/2−) = J↑(↓)(x = L/2+). (8)

In total there are eight equations: two boundary conditions for two interfaces, one for each
spin state. From this, the unknown constants of equations (6a)–(6c) can be calculated and
the spatial dependence of the two spin potentials are determined relative to the equilibrium
chemical potential.

Secondly, we consider that the magnetization orientation of the detection ferromagnetic
electrode changes relative to the injection electrode. This is the situation of the antiparallel
(ap) magnetization. This implies that 2Rib2/(1 + P0) should be exchanged for 2Rib2/(1 −
P0) in equations (7a) and (7b), the constants Ap, Bp, Cp, Dp, Fp and Gp should be
exchanged for Aap, Bap, Cap, Dap, Fap and Gap, and σ2↑(↓) should be exchanged for σ2↓(↑) in
equation (6a), (6b) and (6c), because the minor (major) spin species in the injector electrode
will be the major (minor) spin species in the detector electrode. The difference between
constants Ap(ap) and Cp(ap) for the parallel (antiparallel) configuration equals the difference
between the electrochemical potentials at both ferromagnetic ends. Because Ap(ap) − Cp(ap) is
proportional to J , the resistances for the parallel (Rp) (antiparallel (Rap)) configuration follow
directly from these two constants. The resistance change between parallel and antiparallel
configurations of the magnetizations of the two electrodes, for a vertical geometry, can be
calculated as

Rap − Rp

R0
= 4

(
P0 Rib1

1 − P2
0

+ P1 R1

1 − P2
1

)(
P0 Rib2

1 − P2
0

+ P2 R2

1 − P2
2

)

× 1

Rsc(R1 + Rib1 + Rsc + Rib2 + R2)

×
{

(M2
3 +4)1/2

K3
cosh

(
M3

2K3

)}

{
(1 + Q+

4 Q2)(1 + Q+
3 Q1) exp

(
(M2

3 +4)1/2

2K3

)
− (1 + Q−

4 Q2)(1 + Q−
3 Q1) exp

(
− (M2

3 +4)1/2

2K3

)}
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with

Q1 =
[

Rib1

1 − P2
0

+ 2R1

1 − P2
1

K1

M1 +
√

M2
1 + 4

]

Q2 =
[

Rib2

1 − P2
0

+ 2R2

1 − P2
2

K2

M2 +
√

M2
2 + 4

]

Q±
3 =

[
1

K3 Rsc

(

+ M3

2
±

√(
M3

2

)2

+ 1

)]

Q±
4 =

[
1

K3 Rsc

(

− M3

2
±

√(
M3

2

)2

+ 1

)]

,

(9)

where P1(2) = (σ1(2)↑ − σ1(2)↓)/σ1(2) f is the bulk spin polarization of the injector and
detector electrode, respectively, and R1(2) = L1(2)/σ1(2) f are the resistances of the two
electrodes. Rsc = L/σs is the resistance of the semiconductor channel, L1, L2 and L are the
lengths of ferromagnetic injector and detector electrodes and the semiconductor part between
the two electrodes, respectively, and K1 = λ1/L1, K2 = λ2/L2 and K3 = λ/L. The
resistance difference is normalized by the sum of the spin-independent resistance R0 = R1 +
Rib1 + Rsc + Rib2 + R2 instead of Rp to keep the expression compact. Using a resistor model,
that includes spin-selective interface barriers and a spin diffusion length in the semiconductor,
we checked that the difference between our magnetoresistance (equation (9)) and the regularly
used (Rap − Rp)/Rp, mainly proportional to P0, is less than 2% for the calculated results in the
following sections.

In the limit of small electric field, we checked that equation (9) converges to the all-metal
regime as treated by Fert et al [17] and Jedema et al [38]. For small bulk spin polarizations, the
magnetoresistance is quadratically proportional to the polarization, corresponding to the simple
diffusive model of van Son et al [39].

We will now discuss the derivation of the magnetoresistance measured in a lateral geometry
in which the semiconductor layer spreads from −∞ to ∞ as can be seen from figure 2(b). At
positions x = −L/2 and L/2 on the semiconductor two ferromagnetic electrodes are placed,
separated from the semiconductor via an interface barrier. We assume that the width of the
electrodes is negligibly small compared to the channel length, and therefore, the current is
injected at only one specific point into the semiconductor. Furthermore, we assume no depth
dependence of the current throughout the semiconductor channel. The conditions and equations
for regions 1, 2 and 3 can be treated analogously to the vertical structure. However, for regions
4 and 5 the total current of both spin channels must be zero for x = ±∞, which leads to

4 : μ↑(↓) = H ± 2N

σs
exp(x/λs) (10a)

5 : μ↑(↓) = O ± 2R

σs
exp(−x/λs). (10b)

The five equations for the chemical potentials can be solved with boundary conditions
analogously obtained as for the vertical structure (equations (7a) and (8)). Additionally,
continuity is assumed of spin-up and spin-down chemical potentials and continuity of spin-
up and spin-down currents between the two semiconductor regions at the injection and the
detection point. The same general formula holds for the lateral local measurement geometry,
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with the exception that Q±
3(4) is now defined as

Q±
3 =

[
1

K3 Rsc

(

+ M3

2
+ M4

2
±

√(
M3

2

)2

+ 1 +
√(

M4

2

)2

+1

)]

Q±
4 =

[
1

K3 Rsc

(

− M3

2
+ M5

2
±

√(
M3

2

)2

+ 1 +
√(

M5

2

)2

+ 1

)]

.

(11)

For the vertical as well as the lateral geometry, the spin flip length in low-polarized
ferromagnetic metals and in absence of electric fields, is several orders of magnitude smaller
than in a nonmagnetic semiconductor. Additionally, for both spin states the characteristic
electrode resistance is much smaller than the interface resistances. Therefore, we neglect the
dependence of the bulk ferromagnet properties on the magnetoresistance (R1,2 = 0), and the
magnetoresistance becomes independent of the bulk spin polarizations in the ferromagnetic
electrodes P1 and P2. The spin polarization depends, among other things, on material
combinations and applied bias. In the following analysis the polarization at the interface P0

will be fixed to 0.4, a conservative estimation of the injection systems for low bias: P0 = 0.4
for Co/AlOx [40], P0 = 0.57 for CoFe/MgO [41], and P0 = 0.85 for GaMnAs/Ga [42]. In
the following subsections, we will use equations (9) and (11) to calculate the dependence of
the magnetoresistance on the interface barrier resistances, the applied electric field and the spin
diffusion length for the vertical and lateral geometry, as well as for a newly proposed geometry
with additional electric biasing of the semiconductor branches.

3.1. Magnetoresistance of a vertical measurement geometry

In figure 3, the magnetoresistance is calculated for different values of the electric field,
expressed by the parameter M (0, 40 and 100), as a function of the ratio between the interface
barrier resistance and the resistance of the semiconductor, with K3 = λ/L = 5. The
figure is divided in three columns, showing the results for the vertical measurement geometry
(column A), the lateral local measurement geometry (column B) and the newly proposed
measurement geometry for which the semiconductor side branches are biased (column C). For
the vertical geometry discussed here, the magnetoresistance is calculated with equation (9),
where M3 is defined as M . The results of column B and C will be discussed in sections 3.2
and 3.3.

If we focus on figure 3(A) for M = 0, a maximum in the magnetoresistance occurs for
Rib1/Rsc = Rib2/Rsc ≈ 6.5. Note that this value heavily depends on the chosen parameters,
such as P0 and λ/L. Contours mark the different regions for which the magnetoresistance
is higher than 10%, 5%, 1% and 0.1%. The magnetoresistance is proportional to the spin
splitting (μ↑ − μ↓) in the middle of the channel in the antiparallel configuration divided by the
total voltage drop over the device [12]. For small Rib/Rsc, the discontinuities in the chemical
potential introduced by the interface resistances are too small to generate a high enough
spin splitting in the semiconductor (in comparison with the splitting in the ferromagnet).
As a result, the current will not be spin polarized and a low magnetoresistance is expected.
This phenomenon is known as the impedance mismatch. In the region near the maximum
magnetoresistance, the predominant contribution to the variation of electrochemical potential
comes from the potential drops at the interface. In the antiparallel configuration, this gives
rise to a spin splitting which is hardly affected by the spin flips in the semiconductor since
the number of spin flips is much too small in comparison with the total amount of carriers.
For high values of Rib/Rsc for the high-λ/L regime, the spin splitting saturates. However,
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Figure 3. Contour plots of the magnetoresistance versus the injecting and detecting interface barrier
resistances in units of the semiconductor resistance, Rib1/Rsc and Rib2/Rsc. The magnetoresistance
(Rap–Rp)/R0 is calculated for fm/ib/sc/ib/fm structures in the vertical (column A) geometry, the
lateral layout (column B), and the lateral geometry with biased semiconductor side branches
(column C). For each geometry, three different electrical field parameters have been used, M =
0, 40, 100. In these calculations, we take P0 = 0.4 and λ/L = 5.

the voltage drop over the device increases, due to higher interface barrier resistances, and the
magnetoresistance drops down to zero.

Applying an electric field can enhance spin diffusion dramatically [33]. In the bottom two
graphs of column A in figure 3, we show the influence of the electric field. Contour plots of the
dependence of the magnetoresistance on both barrier resistances are shown for M = 40 and
100. Already for small fields, the range of Rib1 and Rib2 that results in a magnetoresistance
above the detection limit, typically 1%, considerably increases. As long as the resistance
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Figure 4. Calculation of the optimized magnetoresistance for different electric fields (represented
by M) as a function of the injection and detection interface barrier resistances in units of the
semiconductor resistance, for a vertical measurement geometry, where P0 = 0.4 and λ/L = 5.

of the detection tunnel barrier is larger than the resistance of the injection tunnel barrier,
the magnetoresistance increases monotonically with increasing M . As the electrical field is
increased, the upstream and downstream spin diffusion lengths start to differ. Electrons follow
a drift motion in addition to a random diffusive walk by which a higher spin accumulation is
preserved over a longer distance, resulting in a higher magnetoresistance. Moreover, it can be
seen in the figure that the measurement geometry is no longer symmetric upon interchanging
the injection and detection sides. This shift of the optimum magnetoresistance will be explained
in next paragraph.

For the vertical measurement geometry, we calculated for each value of the electric field
the interface barrier resistances for which the magnetoresistance is maximum (see figure 4).
For a small electric field, the device is symmetric and the injection and detection sides can be
interchanged. Therefore, the maximum magnetoresistance corresponds to Rib1 = Rib2. As the
electrical field increases, the absolute value of the optimum injection barrier resistance (Rtb1)
increases, and the absolute value of the optimum detection barrier resistance (Rib2) decreases.
This is a consequence of the fact that the upstream and downstream spin diffusion lengths start
to differ (λu < λ < λd). As the injection barrier should match the downstream spin diffusion
(Rib1 ∼ 1/λd) and the detector barrier the upstream diffusion (Rib2 ∼ 1/λu), optimum barrier
values start to diverge.

In figure 5, the magnetoresistance is plotted as a function of the ratio between the spin flip
length and the channel length for a set of parameters close to the optimum ratio (Rib1/Rsc =
Rib2/Rsc = 2) and different values of the electric field. In absence of an applied voltage
(M = 0), we observe that, as λ/L increases, the magnetoresistance increases monotonically.
This is consistent with the fact that the probability of spin flip inside the semiconductor channel
decreases with increasing ratio λ/L. For low rates of λ/L the magnetoresistance approaches
zero, due to the lack of spin splitting. The upper limit λ/L → ∞ corresponds to P2

0 /(1 − P2
0 ),

half the magnetoresistance in the Julliere formula that would have been measured in a single
tunnelling experiment between two ferromagnets. More interesting is that if an electric field is
applied, the diffusion length splits up in the upstream and downstream diffusion lengths. This
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Figure 5. Magnetoresistance as a function of the ratio between the spin diffusion length λ and length
of the semiconductor channel L for a vertical measurement geometry, and for different values of M,
where P0 = 0.4 and Rib1/Rsc = Rib2/Rsc = 2.

is only effective if the diffusion length is smaller than the semiconductor channel length, and
thus the magnetoresistance increases rapidly for values of λ/L < 1. This offers the prospect
of still a detectable spin splitting at larger separation of the injection and detection barriers or
for smaller spin diffusion lengths. For instance, the magnetoresistance is still larger than 1%
for λ/L ≈ 0.01 for M = 100. The nonphysical maximum around λ ≈ L and the reduction
of the magnetoresistance towards the asymptote can be attributed to the inclusion of the spin
diffusion length in M (see equation (5)).

3.2. Magnetoresistance of a lateral measurement geometry

For a lateral measurement geometry, the magnetoresistance dependence on Rib/Rsc is
calculated with equation (11), and the results are shown figure 3(B), where M3 is defined as
M , and where M4 and M5 are set to zero. A horizontal comparison can be made between
the vertical and lateral local measurement geometry for M = 0, 40 and 100. First let us
investigate the dependence of the magnetoresistance at low bias (M = 0). We observe that the
magnetoresistance is for every combination of interface barrier resistances smaller than for the
vertical geometry. The optimum value is obtained now for Rib1(2)/Rsc ≈ 2.1 and thus shifted
towards lower values of Rib/Rsc as compared to the vertical devices (Rib1(2)/Rsc ≈ 6.5). Again,
this numerical value heavily depends on the chosen parameters. The shift to lower Rib1(2)/Rsc is
consistent with the fact that the total loss of spin information in the semiconductor is higher due
to extra spin loss in the two semiconductor branches. This leads to a stronger coupling between
the two channels, i.e. a higher equivalent spin flip conductance connecting the channels. As
the maximum magnetoresistance is obtained when the barrier resistance matches the spin flip
resistance, it is expected to be located at a lower Rib1(2)/Rsc ratio.

The contourplots for M = 40 and 100 in column B of figure 3 show the influence of the
electric field for the lateral measurement geometry. If we consider for M = 40 for instance the
1% contour, the range of Rib1 and Rib2 considerably increases compared to the M = 0 graph.
However, for M = 100, we observe that the magnetoresistance for certain interface barriers
hardly changes. Together with the electric field in the semiconductor channel, the electric fields
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Figure 6. Calculation of the optimized magnetoresistance for different electric fields (represented
by M) as a function of the injection and detection interface barrier resistances in units of the
semiconductor resistance, for a lateral measurement geometry, where P0 = 0.4 and λ/L = 5.

in the semiconductor side branches increase. The spin flip starts to be dominated by diffusion
processes in these branches and the magnetoresistance saturates. Similar to the zero-field case,
the magnetoresistance for lateral will always be lower than for vertical structures.

Analogously as for the vertical geometry, the optimum interface barrier resistance are
calculated for different values of the electric field (see figure 6). The optimum injection barrier
resistance (Rib1) increases and the optimum detection barrier resistance (Rib2) decreases for
increasing electric fields up to M = 20. For larger electric fields, where M > 20, the
optimum injection (detection) barrier resistance slowly drops towards the asymptotic value
2.4 (0.4). This value heavily depends on the chosen parameters (P0 = 0.4, λ/L = 5). The
optimum barrier resistance of the detector drops in the high-field regime because the influence
on spin transport in the semiconductor is localized within the upstream length λu of the tunnel
barrier. λu decreases with increasing field and becomes much shorter than L. Matching of both
resistances according to Rib1 Rib2/R2

sc ≈ 1 as shown in figure 3 leads to a maximum in Rib1/Rsc.
When the optimum injector barrier resistance no longer increases, the benefits of extra injection
are balanced by the drawbacks of less detection, and therefore a maximum is found. Finally,
when the spin-down length reaches the same value of the semiconductor channel length, further
rise of M hardly affects the magnetoresistance and the optimum resistances no longer change.

Figure 7 shows the dependence of the magnetoresistance on the ratio between the spin
flip length and the channel length, for Rib1 = Rib2 = 2Rsc (close to the optimum ratio), and
for different electric fields. Analogously to the vertical geometry (see figure 5), we observe
that as the λ/L ratio is increased, the magnetoresistance increases. However, an applied
electric field yields only a minimal increase in magnetoresistance for the lateral geometry.
The advantage of a higher drift velocity in between the electrodes (i.e. leading to higher
magnetoresistance) is cancelled by a proportional increase of the drift velocity towards the
outer ends of the semiconductor side branches (regions 4 and 5). More spin flip events in these
regions reduce the existing spin accumulation in the semiconductor by which eventually the
magnetoresistance saturates upon an increase of the electric field. In the next section, we will
suggest a new measurement geometry which solves the fundamental problem of spin loss in
the semiconductor side branches.
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Figure 7. Expected magnetoresistance as a function of the ratio between the spin diffusion length
λ and semiconductor channel length L for a lateral local measurement geometry, and for different
values of M, where P0 = 0.4 and Rib1/Rsc = Rib2/Rsc = 2.

3.3. Biasing the semiconductor side branches

In this section, we will discuss an improved layout to circumvent the extra spin flips in the
semiconductor side branches. The much lower magnetoresistance value obtained in the lateral
geometry compared to the vertical geometry originates from the extra spin flip processes
in the two semiconductor side branches (region 4 and 5 in figure 2(a)). Moreover, the
magnetoresistance improvements induced by the electric field are quenched in the lateral
geometry due to inwardly pointed electric fields in the two side branches. Here we will show
that the magnetoresistance can be improved if we apply an extra dc bias voltage to the detector
electrode, with respect to the two side branches (see figure 8). The spin-dependent signal can
be distinguished from the extra dc bias voltage by measuring in the ac mode. The electric
field produced by this applied ac current has to be much smaller than the dc bias voltage.
The dc electric field is assumed to be constant in the semiconductor, pointing outwards in
both semiconductor branches and directed towards the detector electrode in the semiconductor
transport channel (region 3). Large spin currents in the semiconductor side branches, which
result in a large amount of spin flips, are now avoided, because drift in those regions will be
minimal due to an opposite electric field. Therefore, relatively large detection spin currents and
small spin currents in the semiconductor side branches will enhance the magnetoresistance.
The given situation can be approximated if we substitute λu for λ in equation (11), which is
equal to M = M3 = −M4 = −M5 (M originates from the dc electric field). Analogously to
the calculations for the lateral geometry the electrode resistances are assumed to be orders of
magnitude smaller than the barrier resistances. Therefore, the R1 and R2 are set equal to zero,
and the magnetoresistance corresponds to

(
Rap − Rp

R0

)

bias

= 4P2
0

(1 − P2
0 )2

Rib1 Rib2

Rsc(Rib1 + Rsc + Rib2)

(M2 + 4)1/2

K3

× cosh
(

M
2K3

)

Q1 Q2 exp
(

(M2+4)1/2

2K3

) − Q3 exp
(− (M2+4)1/2

2K3

)
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Figure 8. Cross section of the lateral spin-valve device in the ac measurement geometry with an
extra dc bias voltage between the detector ferromagnet and the two semiconductor branches. A
spin-polarized current is injected from region 1 into region 3 and detected at region 2. The electric
field is assumed to be constant in the semiconductor, but the direction in the left semiconductor side
branch is opposite to the direction in the right branch and the semiconductor channel.

with

Q1 =
[

Rib1

Rsc(1 − P2
0 )K3

(−M +
√

4 + M2) + 1

]

Q2 =
[

Rib2

Rsc(1 − P2
0 )K3

(
√

(4 + M2) + 1

]

Q3 =
[

Rib1

Rsc(1 − P2
0 )K3

(−M) + 1

]

.

(12)

In column C of figure 3, the effect of tuning the electric field in the side branches on
the magnetoresistance is shown for a broad range of injector and detector barrier resistances.
Obviously, for zero bias (M = 0), the result for this new measurement geometry is identical
to the lateral geometry. The expected magnetoresistance for the biased measurement geometry
is already substantially improved for low electric fields. In comparison with the graphs of
column B (M = 40 and 100), the matching regime is considerably broadened, confirming
the robustness of the measurement geometry (e.g. consider the 5% contours of the graphs for
M = 40 in columns B and C in figure 3). This can be an important step in realization of lateral
semiconductor devices. For high fields (M > 40), the contour plots of the magnetoresistance
will become identical to the vertical measurement geometry. The opposite electric fields in the
semiconductor branches are so strong that any spin current is absent and the spin current layout
of the vertical device is recovered. For M → ∞ and λ/L → ∞, the magnetoresistance is just
limited to the maximum obtained for vertical devices, i.e.

(
Rap − Rp

R0

)

bias, max

= 2P2
0

1 − P2
0

Rib1

Rsc + Rib1 + Rib2
, (13)

which is the Julliere expression times a scaling factor, the ratio of the injection tunnel barrier
over the total resistance [43]. As explained in section 3.1, the injection barrier resistance should
match the downstream spin diffusion length, which is much shorter than the semiconductor
channel length and is thus the critical parameter in equation (13).

To illustrate that the magnetoresistance increases already for low electric fields, we plotted
the magnetoresistance as a function of M for P0 = 0.4, λ/L = 5 and Rib1/Rsc = Rib2/Rsc = 2
together with the vertical and lateral local geometry (see figure 9). Already for M ≈ 10, the
magnetoresistance is almost equal to the values calculated for a vertical geometry. In this
situation, only a few per cent of the increase in magnetoresistance between the biased and
non-biased geometry can be attributed to the regular electric field dependent splitting of the
diffusion lengths in the semiconductor channel. Again, for higher fields, the magnetoresistance
converges to the vertical geometry and approaches the maximum described by equation (13).
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Figure 9. Dependence of magnetoresistance on the applied electrical field parameter (M), in a
lateral measurement geometry with biased semiconductor side branches, where P0 = 0.4, λ/L = 5
and Rib1/Rsc = Rib2/Rsc = 2.

For realistic devices, e.g. a semiconductor length of 1 μm and bias voltages of less than 3 mV,
M is larger than 40 for all temperatures, and the magnetoresistance is already within 5% of
magnetoresistance calculated for vertical structures (Rib1/Rsc = Rib2/Rsc = 2 and λ/L = 5).

Exploration of spin transport in materials with higher spin scattering probability (small
spin diffusion length) or the development to longer spin channels (high L) is desired for the
development of new spintronic components. In figure 10, we plotted the magnetoresistance
as function of the ratio of the spin diffusion length and the semiconductor channel length. In
absence of a bias, the curve is identical to the M = 0 curve of the lateral measurement geometry
in figure 7. If the semiconductor side branches are biased with an extra dc electrical field, the
magnetoresistance is approaching values obtained for the vertical device as shown in figure 5.
From estimations based on figure 10, with a semiconductor channel length of 100 nm, and a
biased electric field of a few mV per 10 nm, M can become as large as (1 × 109 m−1 ×λ), with
λ in m for temperatures of 3 K. For spin diffusion lengths of the order of the mean free path, for
which equations (9) and (11) are justified [13], a detectable magnetoresistance of at least 1%
should be observed, which is very promising for experimental devices. For devices operating
at room temperature, M has a maximum value of (4 × 107 m−1 × λ), and the minimum spin
diffusion length for observing magnetoresistance can still be as short as 50 nm.

Although there has been significant progress in recent years in achieving efficient electrical
semiconductor spin-valves, up to now different experiments show only marginal effects.
Koo et al [44] demonstrated full electrical spin injection and detection in InAs quantum
wells with an observed magnetoresistance as small as 0.029%. Saha et al [30] reported
magnetoresistance of epitaxially grown MnAs/GaAs lateral spin-valves of 3.6%, which is
according to the authors much higher as predicted on the basis of only diffusive transport
and using a conservative value for the spin polarization. Consistent with our calculations,
they measure a decreasing magnetoresistance with the channel length. The magnetoresistance
increases with current, which may be similar to what is shown in figure 7 for electric fields
equivalent to their device operation. However, the increase of magnetoresistance can also be
explained by an enhancement of spin injection efficiency due to narrower depletion widths.
Spin-valve magnetoresistance effects of 0.001% have been measured in lateral ferromagnet–
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Figure 10. Expected magnetoresistance as a function of the ratio between the spin diffusion and
semiconductor channel length for a lateral measurement geometry with biased semiconductor side
branches (different values of M), where P0 = 0.4 and Rib1/Rsc = Rib2/Rsc = 2.

semiconductor devices by Lou et al [10]. They irrefutably proved the electrical detection of
spin transport by using the Hanle effect to suppress the nonlocal signal and by simultaneously
optically investigation of spin accumulation in the channel via the Kerr effect. Their measured
effect is, however, significantly lower than our optimized predictions in this paper.

Substantial differences between our calculations and experimental results might be the
result of the use of non-optimized parameters in these experiments (channel length, spin
diffusion length, bias voltage, and interface and channel resistances). Additionally, we
would like to mention that the nonlocal magnetoresistance, as commonly exploited, is
half the magnetoresistance predicted in the local geometry. Further reductions to lower
magnetoresistance can be justified, because our quasi-two-dimensional solutions do not include
current spreading or current crowding, and assume perpendicular injection and detection at
only a single point [32]. Insertion of highly doped layers to locally suppress the width of the
Schottky barrier influences the carrier concentration, and can partially lead to depolarization
of the carriers along the current path. Carriers extracted from above the Fermi level will
be subject to small negative built-in electric fields. The spin accumulation, and thereby the
magnetoresistance, reduces when the negative electric field extends over a distance comparable
to the spin diffusion length. Finally, impurities at the interfaces or Rashba effects in the
semiconductor interface regions, where an electric field perpendicular to the current transport
can be present, possibly introduce additional spin flip channels. However, the relation between
these scattering effects that govern the mobility and the spin relaxation mechanisms may be
quite subtle.

4. Conclusions

From the Poisson and diffusion equation, a general drift–diffusion equation was derived by Yu
and Flatté [33], valid for metals and semiconductors. For a vertical device, a lateral device
and a lateral device with biased semiconductor side branches, we have given an analytical
expression for the magnetoresistance. Subsequently, for these geometries the role of the
elementary transport parameters (resistance, spin diffusion length and electric field) on the
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magnetoresistance is examined. If the electric field (applied bias voltage) exceeds a certain
critical value in semiconductors, there will be two distinct spin diffusion lengths, i.e. an
upstream and downstream spin diffusion length. This effect can enhance the spin diffusion
and magnetoresistance dramatically. Via an extra bias voltage, electric fields can be created in
the semiconductor side branches such that the magnetoresistance closely approaches values of
vertical devices. This improvement of spin transport could be used to measure devices with
longer channel lengths or smaller spin flip lengths due to, for example, higher temperatures or
different materials for spin transport.
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